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S U M M A R Y  
A method is developed to obtain numerically eigenvalues associated with ordinary differential equations and variational 
formulations. The numerical operation required is the solution of a set of linear algebraic equations, with one non- 
linearity, i.e., the transcendental dependence on the eigenvalue. This operation is the same for all problems resulting 
from equations of the same order, and therefore can easily be programmed; the particulars of a specific problem are 
then just input for the program. 

1. Introduction 

Let an eigenvalue problem be given by 

G,(y, 2) = 0,  (1) 

where G, is a linear differential operator of order n, y an eigenfunction, and 2 the corresponding 
eigenvalue. Eq. (1)is associated with a proper set of homogeneous boundary conditions. This 
eigenvalue problem is assumed to have an equivalent variational formulation 

2 = Min [I F(y)d~ / ~ H(y)d~] ,  (2) 

where F and H are differential operators and the integration is over the proper region. 
In general G, will generate a linear ordinary differential equation of the n th order with 

variable coefficients. Thus, in general the solution of the eigenvalue problem will not be known. 
Because the motivation for this investigation stems from these solutions being "unknown", 

this point must be further elaborated, even at the risk of being too obvious. 
What is usually meant by a solution being known is that it has a "name" (associated some- 

times with the "name" of the equation) and that its numerical values, including its zeros are 
directly available, either by computation or from tables. Examples of such known solutions are 
sin, cos, BesseI functions, Legendre polynomials, and some other particular cases of the second 
order linear equation associated with the Sturm-Liouville problem (e.9. , Ref. [1], [2]). All 
these known solutions are obtained (at least one of each pair) by power series expansion known 
as the method of Frobenius Ref. [2]. Once one solution is known, the other one is directly 
obtainable also (e.9. , Ref. [2]). 

While this method is applicable, in principle, to a wide variety of equations, including higher 
order linear equations, Ref. [2], or non-linear ones, Ref. [3], there are cases where it is quite 
impractical, even when computers are used. The main obstacle here is that the coefficients of 
the series contain the eigenvalues, and when boundary conditions are to be satisfied at large 
values of the independent variable this may become quite cumbersome. Ref. [3] is an example 
where this difficulty arises, but is overcome, and Ref. [4] is an example where auxiliary methods 
must be employed. 

Since practical engineering situations require the knowledge of such solutions, effort is being 
made to find bounds to the eigenvalues, or approximate values. Some indication of this endeavor 
is found in Refs. [5]-[32]. Indeed, the work presented in this paper is directed toward another 
method to obtain bounds and approximations to eigenvalues. 

* On sabbatical leave at Case Western Reserve University. 

Journal of Engineerin9 Math., Vol. 8 (1974) 297-302 



298 D. Pnueli, J. lsenber 9 

While the first eigenvalues in many problems can be bounded or approximated by many 
methods, the same does not apply to higher eigenvalues. Only few methods apply then, with 
the difficulties mounting rapidly, the higher the eigenvalue. Methods which apply to higher 
eigenvalues are usually restricted to particular cases of Eqs. (1)and (2), e.g., Refs. [11], [13], 
[14-], [17-], [21], [23], [24] and [26-]. 

The contribution of this paper is that it presents a method which : 
(a) Yields bounds to the eigenvalues (the first and thehigher ones) for a large class ofoperators 

(eqs. (1)). 
(b) Yields approximations, which can be systematically improved, to the eigenvalues (the 

first and higher ones) for the most general case of operators (eqs. (1) and (2)). 
(c) Yields approximations, which can be systematically improved, to the eigenfunctions and 

to the zeros (the first and the higher ones) for the most general case of operators (eqs. (1) and 
(2)). 

2. Analysis 

Let an auxiliary operator be defined 

K ,  (~, #) = 0 ,  (3) 

as that obtained by changing each coefficient in G, into some constant (to be chosen later). 
Obviously K ,  generates a linear ordinary differential equation of the n th order with constant 
coefficients. 

This work is based on the assumption that the general solution of Eq. (3) is analytically 
known. 

Let an approximation to y (the exact solution of the eigenvalue problem, i.e., Eq. (1)), be 
defined 

q ~ y (4) 

i.e., t / is an approximation to y, if and only if: 
(i) The region over which y is defined can be broken into a finite number of subregions. 
(ii) q satisfies eq. (3) over each such subregion ; also t/satisfies the same boundary conditions 

as y. (It is implied that q and its n first derivatives are continuous over the open subregions.) 
(iii) t/and its first ( n -  1) derivatives are continuous everywhere, including over the boundaries 

of the subregions. 
Because the general solution of eq. (3) is analytically known, the form of q over every sub- 

region is the sum of n known functions with n coefficients (different for each subregion). Let 
the number of subregions be m. Then the total number of coefficients is (m • n). It is noted that 
because the boundary conditions and eq. (3) are homogeneous, one of the coefficients can be 
arbitrarily chosen, thus only (m x n ) -  1 of them need be computed. However,/~ must also be 
obtained. Hence, to completely determine the approximation,/1 and (m x n) - 1 coefficients are 
needed, i.e., (m x n) numbers. 

The definition of the approximation supplies the (m x n) necessary equations : n as boundary 
conditions and n • ( m -  1) as continuity conditions. A general method to solve this set of equa- 
tions is considered later. 

There are, of course, many approximations to y, depending on the number of the subregions 
and on their distribution. It is, therefore, helpful to define a hierarchy of  approximations : 

Let #j and #~ be the eigenvalues corresponding to the approximations t/j and th. 
t/j is defined as a better approximation than t h if and only if: 

< �9 ( 5 )  

It is noted that the additional information 

2 > # i  or 2 < # ~  (6) 
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may be very important in many practical cases. Considerations are, therefore, given first to 
cases where 2 > #i, i.e., where #i is a lower bound* to the exact value. 

Let the operator K,(t/, # ) = 0  be associated with an equivalent variational formulation 
(similarly to the relations between eq. (1) and eq. (2)): 

# = Min [J" L(tl)d~ / .[ M(q)d~]. (7) 

Let the operators in eq. (2) have the form** 
./2 (dky 2 

FIy) : f_oS  , (8) 
k <,/2 { dk y] z 

H ( y ) =  E hk~d~/t (9) 
k=O 

The form of L(t/) and M(q), eq. (7), will then be: 
n/2 (dktl~2 

L(rl) = Z ak , (10) 

k < ,/2 { d u q\ 2 
M(r/)= E bk\~d~) , (11) 

k=O 

with ak and bk constants, being different over each subregion 

A systematic generation of the coefficients ak and bk over the proper subregion is now sug- 
gested, so as to guarantee/~ <_ 2: 

(i) When it is known that everywhere over the L th subregion 

d~k] j x . > 0,  (12) 

choose 

1 f~L - fkd~, (13) ak r ~L-1 

Ref. [-28]. 
(ii) Otherwise, choose 

a k = S i n  [fk]r162 (14) 

Ref. [33]. 
(iii) When it is known that 

[ d ( d k y ~ 2 ]  hk] (15)  

everywhere over the L th subregion, choose 

1 f eL -- hkd~ . (16)  

(iv) Otherwise, choose 

b k - Max [hk]r - l<_~<=~L. (17) 

Ref. [33]. 
In the language of the references cited, the operations indicated in (i) and (iii) constitute 

"shifts" and therefore lead to lower bounds (refs. [27] and [28]); while those of (ii) and (iv) are 

* Upper  bounds  are assumed to be directly available by the Rayleigh-Ritz  method.  Still, a corresponding argument  
can be applied to upper bounds  too. 

** A more general form is still admissible, using a slightly modified argumentat ion.  
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bounds to weight functions, and also lead to bounds (Ref. [33]). Furthermore, a direct result* 
of the analysis presented in those references is that further subdivision of the subregions yield 
better (and, therefore, higher) lower bounds to the eigenvalues. Hence, the process of repeated 
subdivisions creates monotonically increasing series of the approximations to the eigenvalues, 
which is bounded from above by the exact values, and, therefore, it must converge. When this 
scheme can be completed, i.e., the coefficients and the eigenvalue can be obtained for each 
approximation, this satisfies properties (a) and (b) in the Introduction : The approximations are 
monotonically improved, and the eigenvalues are bounded from below. 

This method is always applicable (note that to apply (ii), eq. (14) it is not necessary that eq. (12) 
does not hold ; the same is noted about eqs. (17) and (15)). Still in certain cases a modification 
may be helpful. In some cases, a better approximation to the exact value may be more important 
than the information resulting from its being a bound, i.e., one is ready to give up this information 
in order to have a faster convergence. Also, there may be cases where eqs. (14) and (17) yield 
the value zero. When this zero is the coefficient of the highest derivative the case requires a 
special treatment in the numerical solution, which one may prefer to avoid. 

It is stated that when eqs. (13) and (16) are always used, the approximations also form a 
series of "monotonically better ones", in the sense of Eq. (5). 

3. Examples 

In order to illustrate the method we shall address ourselves to the following two examples of 
the Sturm-Liouville boundary value problem: 

Case 1 : Zeroth order Bessel function 

d 2 y dy 

with the boundary conditions 

. y'(O) = 0 and y(1) = O. 

Case 2: Temperature distribution in laminar flow within an annulus 

dE); dy 2"]'2~ ( 1 - ~ 2  - 1--fi2 ) l n ~ - -  In 

~ d ~ - + ~ +  ( l_f i2  ) y = O ,  
Ro 1 + 

where 

Ri 1 
fi - R o 6'  Ro 6, 

(18) 

(19) 

with boundary conditions 

y ( f l ) = 0  and y ' (1 )=O.  

Both these problems were solved by a general computer program for Sturm-Liouville 
problems. The coefficients for each subregion were computed by eqs. (13) and (16). For this 
purpose the indefinite integrals of fk and hk were supplied as input to the program (more 
complicated functions can be treated by numerical integration). The resulting constants for 
each subregion yield a functional form for t/ which is either in terms of trigonometric or 
hyperbolic functions. The requirement that ~ and its first derivative be continuous at the 

* An outline of a proof is that by merging two subregions into onel and performing the operation described in Refs. 
[-27], [-28] or [33], as the case may be, a lower bound (corresponding to the merged subregion) to a lower bound 
(corresponding to the two original subregions) is obtained. Thus the two subregions yield a higher and therefore better 
lower bound. 
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boundary between subregions, along with the boundary conditions (which are input to the 
program) yield the desired system of equations. This system is linear except for the approximat- 
ing eigenvalue, p. For any guess of p the system having a band width of two can be solved 
directly with no inversion, and the last equation used as a check on the accuracy of the guess of p. 
Thus the problem reduces to searching for the root of a transcendental equation, which then 
yields the value of/~. 

When the program finds an interval where an eigenvalue (first or higher) exists then a search 
by the Regula-falsi method is made, using only a total of two subregions. The determined value 
of g is then refined by successively doubling the number of subregions and using a quadratic 
search until the desired level of accuracy is attained. 

Table 1 shows the computer output for the first eigenvalues of the zeroth order Bessel 
function. It is interesting to note that even the first approximation of 2.45 for two subregions is 
fairly close to the actual eigenvalue. 

TABLE 1 

Sequence ~convergence ~firsteigenvalue ~thezerothorderBessel~nction. 

Case 1 : Zeroth order Bessel function 

EIGENVALUE NUMBER 1 

Number of Eigenvalue Relative Function 
subregions error evaluations 

2 2.44957985016 not  known 8 
4 2.43396768647 6.41429E-03 4 
8 2A1618816789 7.35850E-03 7 

16 2.40867108730 3.12084E-03 7 
32 2.40603829591 1.09424E-03 6 
64 2.40519164351 3.52010E-04 5 

128 2.40493280915 1.07626E-04 5 
256 2.40485630312 3.18131E-05 5 
512 2.40483422715 9.17983E-06 5 

1024 2.4048279083 2.60157E-06 5 
2048 2.40482622242 7.27042E-07 4 
4096 2.40482573924 2.00922E-07 4 
8192 2.40482560692 5.50210E-08 4 

16384 2.40482557096 1.49528E-08 4 
32768 2.40482556125 4.03749E-09 4 

TABLE 2 

Summary of results for first ten eigenvalues for temperature distribution for laminar flow in an annulus. 

Case 2: Temperature field in laminar flow through an annulus 

Number Eigenvalue Number of Relative 
st&regions error 

1 1.12495397498 8192 6.00478E-09 
2 4.58268509350 8192 3.66127E-09 
3 7.83072653894 8192 6.00827E-09 
4 11.04763008738 8192 8.24317E-09 
5 14.25302968271 16384 2.56378E-09 
6 17.45276712492 16384 3.01836E-09 
7 20.64925580094 16384 3.43319E-09 
8 23.84369012742 16384 3.81547E-09 
9 27.03673453524 16384 4.17067E-09 

10 30.22879043503 16384 4.50300E-09 
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Table 2 summarizes results for the first ten eigenvalues for the temperature distribution in 
laminar flow in an annulus. The results are in agreement with those obtained by conventional 
methods [34]. As seen, the number of subregions required for a given level of accuracy is about 
the same for each eigenvalue. 
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